

Temporal trends and demographic variations in hospitalizations with angiodysplasia of the intestine: A U.S. population based study

Shantanu Devanand Solanki¹, Khwaja Fahad Haq², Zahava Farkas³, Zubair Khan⁴, Raja Chandra Chakinala³, Alina Kifayat³, Muhammad Ali Khan⁵, Abhishek Bhurwal⁶, Christopher Nabors³, Edward Lebovics³

ABSTRACT

Introduction: Angiodysplasia is the most common vascular lesion of the gastrointestinal (GI) tract. However, limited epidemiological data exists on hospitalizations related to angiodysplasia of the intestine (ADOI) in the United States (U.S.). The aim of this study is to analyze inpatient trends and outcomes in hospitalizations with ADOI.

Methods: We analyzed the National Inpatient Sample (NIS) database for all subjects with discharge diagnosis of angiodysplasia of the intestine with or without hemorrhage (ICD-9 code 569.85 and 569.84 respectively) as principal and/or secondary diagnosis during the period from 2001 to 2011.

Results: In 2001, there were 39,244 admissions with discharge diagnosis of ADOI as compared to 41,214 in 2011 (p < 0.0001). Women (58.0%) were more commonly affected than men (42.0%) (p < 0.0001). Overall in-hospital mortality rate was 2.2% for patients with ADOI with hemorrhage and 1.6% for patients with ADOI without hemorrhage (p < 0.0001). Mean cost of hospitalization increased from \$10,701 in 2001 to \$12,478 in 2011 (16.6% increase, p < 0.0001).

Conclusion: The total number of hospitalizations with ADOI increased significantly with women having significantly higher hospitalization rates. Mortality rate was higher in hospitalizations with ADOI with hemorrhage than those without hemorrhage. There was a notable increase in the average cost of hospitalization.

Keywords: angiodysplasia, gastrointestinal bleeding, endoscopy

INTRODUCTION

Angiodysplasia is the most common vascular lesion of the GI tract (1). The terms angiodysplasia, arteriovenous malformation, and vascular ectasia have been synonymously used to describe the same entity (2). It is responsible for close to 6.0% of cases with lower GI bleeding (3). However, epidemiological data on this very common reason of lower GI hemorrhage is limited. Therefore, we designed this study to determine the hospitalization rates of ADOI in the U.S. population, analyze trend in demographic variations, and outcomes, and evaluate its economic impact on the healthcare system.

METHODS

Source of Data

The NIS, designed by Agency for Healthcare Research and Quality (AHRQ), is the largest all-payer inpatient database in the U.S. Data are compiled yearly and contain discharge information from over 1200 hospitals located across 45 states in the U.S. The NIS was designed to approximate a 20% stratified sample of community hospitals in the country and provides sampling weights to calculate national estimates (4). The NIS contains information included in a typical

⁴ University of Toledo Medical Center, Toledo, OH, USA

⁶ St. Barnabas Medical Center, Livingston, NJ, USA

Received: 9 July 2018, Accepted: 6 Aug 2018

Correspondence: Shantanu Devanand Solanki Hospitalist Program, Guthrie Robert Packer Hospital, Sayre, PA, USA

E-mail: shan4788@gmail.com

© 2018 by the authors; licensee Modestum Ltd., UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).

Electronic Journal of General Medicine

¹ Guthrie Robert Packer Hospital, Sayre, PA, USA

² Henry Ford Hospital, Detroit, MI, USA

³ New York Medical College at Westchester Medical Center, Valhalla, NY, USA

⁵ University of Tennessee Health Science Center, Memphis, TN, USA

discharge summary, with safeguards in place to protect the privacy of individual patients, physicians, and hospitals. Each individual hospitalization is de-identified and maintained in the NIS as a unique entry with one primary discharge diagnosis and approximately twenty-four secondary diagnoses during that hospitalization. Each entry also carries information on demographic details, insurance status, comorbidities, primary/secondary procedures, hospitalization outcomes, length of stay, and cost of care. The internal validity of the database is guaranteed by annual data quality assessments of the sample. The external validity of the sample is strengthened by comparison with databases like American Hospital Association (AHA) Annual Survey of Hospitals, National Hospital Discharge Survey from the National Center for Health Statistics, and Medicare Provider and Analysis Review (MedPAR) inpatient data from the Centers for Medicare and Medicaid Services (5,6).

Study Design

This study was exempted from institutional review board (IRB) as it involved de-identified data. It is a cross-sectional study in which we queried the NIS database from the year 2001 to 2011 to identify all the hospitalizations with angiodysplasia of the intestine. We extracted data for all the hospitalizations from 2001 to 2011 with primary diagnosis or secondary diagnosis of angiodysplasia of the intestine with or without hemorrhage, which were identified by ICD-9 codes 569.85 and 569.84 respectively. Patients with age less than 18 years were excluded. Also, hospitalizations with missing information related to age, gender, admission/discharge date, and in-hospital mortality status and demographics and comorbidities were excluded as seen in previous well-designed studies (7,8). NIS data were merged with cost-to-charge ratio (CCR) files available from the Healthcare Cost and Utilization Project (HCUP) to calculate estimated cost of hospitalizations. We estimated the cost of each inpatient stay by multiplying the total hospital charge with cost-to-charge ratio.

Variables and Statistical Analysis

SAS 9.4 (SAS Institute Inc., Cary, North Carolina, USA) was utilized for statistical analyses. Since NIS represents a 20% stratified random sample of U.S. hospitals, analyses were performed using hospital-level discharge weights provided by the NIS, to obtain national estimates of hospitalizations. The frequency of hospitalizations was calculated for each year. We calculated hospitalizations related to angiodysplasia per 1 million U.S. population by dividing yearly hospitalizations by 20% of the U.S. census population more than 18 years of age for that year (9). These hospitalizations were also calculated in subgroups of age (18-34, 35-49, 50-64, 65-79, and >80 years), gender, race (White, Black, Hispanic, and Others), insurance status (Medicare/Medicaid, private insurance, and self-pay/other), hospital location in different U.S. regions (Northeast, Midwest, South, and West), bed size of the hospital (small, medium, and large), and teaching status of the hospital if it is: a) an AMA-approved residency program, b) a member of the Council of Teaching Hospitals, or c) a hospital with a full-time intern and resident-to-bed (IRB) ratio more than 0.25 (10). HCUP provides a quartile classification of the estimated median household income of residents derived from ZIP Code-demographic data. The four quartiles, from 1 to 4, indicate the poorest to wealthiest populations. The bed size varies by region and teaching status of the hospitals. The Cochrane-Armitage trend test was used to calculate trends in categorical variables.[11] The Wilcoxon rank sum test was used to assess continuous variables (12).

RESULTS

Demographics

Patient characteristics are summarized in **Table 1**. The number of hospitalizations with ADOI increased progressively from 39,244 admissions in 2001 as compared to 41,214 in 2011 (p < 0.0001) (**Figure 1**). A total of 432,452 hospitalizations with ADOI were reported during this time period. Out of these hospitalizations, 64.7% were without hemorrhage and 35.3% were with hemorrhage during the study period. These patients were predominantly White and in the 65 to 74 year age group. The mean age with standard deviation was 75.2 ± 25.7 years for the entire affected population. It was 74.2 ± 26.1 years for men and 76 ± 25.3 years for women. Women were more affected than men during the study period (**Figure 2**) and accounted for a higher number of hospitalizations than men (58% vs 42%). Most hospitalizations were seen in urban non-teaching hospitals (48.9%) followed by urban teaching hospitals (38.9%) and rural hospitals (11.9%). Medicare paid for a staggering 81.8% of the total hospitalizations. Hospitals with large bed size accounted for 63.8% of the total hospitalizations.

Table 1: Baseline characteristics of angiodysplasia hospitalizations

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	OVERALL	P-VAL
Number of obs. (n)	39 244	38 297	37.122	39.048	40.336	38,518	37 749	41 068	41 029	38.827	41,214	432 452	<0.0001
Hemorrhage (%)	55/L · · ·	50,251	077122	00/010	10/000	50/510	0171.10	11/000	,025	50,027	,	102,102	
Ves	32.1	32.1	323	30.5	29.8	34.0	363	36.6	423	40.4	40.8	35.3	< 0.0001
No	67.9	67.9	67.7	69.5	70.2	66.0	63.7	63.4	57.7	59.7	59.2	64.7	40.0001
Age in years (%)	01.5	01.5	07.7	05.5	10.L	00.0	05.7	05.1	57.7	55.1	55.L	01.7	
18-34	04	0.5	0.6	0.8	0.5	0.5	0.5	0.5	0.5	0.8	07	0.6	< 0.0001
35-49	2.5	23	23	2.7	2.7	2.5	2.4	2.6	3.0	2.8	2.0	2.5	0 127
50-64	10.2	10.9	11 5	11.6	12.5	13.4	117	13.3	14.0	13.7	15.3	12.6	<0.0001
65-79	45.3	45.0	45.9	44.2	43.0	43.0	44.0	41.8	42.5	43.1	41.5	43.5	<0.0001
>=80	41.5	41.2	39.6	40.6	41.1	40.5	41.2	41.6	40.1	39.6	40.5	40.7	0.0008
Gender (%)			00.0	1010		10.5				00.0	10.5		0.0000
Male	414	397	397	40.9	41.0	42 7	42 3	43 3	43.4	43.2	44.6	42.0	<0.0001
Female	58.6	60.3	60.3	59.1	59.0	57.3	57.7	56.7	56.7	56.9	55.4	58.0	
Bace (%)	50.0	00.5	00.0	55.1	55.0	57.15	5111	50.1	50.7	50.5	55.1	50.0	
White	611	579	57.4	577	59.6	59.2	55.2	61.6	65.7	67.8	67.5	61.1	<0.0001
Black	83	91	89	93	72	91	10.0	10.4	93	12.9	13.5	98	<0.0001
Hispanic	5.2	5.8	6.2	44	5.5	6.7	6.0	5.4	6.9	61	66	5.9	0.4758
Others	17	2.0	2.6	2.6	2.5	2.9	2.7	3.5	3.9	3.4	3 3	2.8	<0.0001
Begion (%)	1.7	2.0	2.0	2.0	2.5	2.5	<u> </u>	5.5	5.5	5.1	5.5	2.0	40.0001
Northeast	22.5	22.8	21.8	20.4	22.4	21.5	20.5	20.5	19.8	21.6	21.0	21.3	< 0.0001
Midwest	24.5	21.8	25.8	26.4	22.4	2/ 3	27.5	24.8	25.8	25.0	26.3	25.1	<0.0001
South	24.5	30.2	36.6	20.4	27.3	37.0	36.6	29.0	20.0	39.6	37.7	29.1	0.0064
West	14.2	16.2	15.8	15.1	16.5	16.3	15.5	15.8	1/ 6	13.8	1/ 9	15.2	<0.0004
location (%)	14.2	10.2	15.0	13.1	10.5	10.5	15.5	13.0	14.0	13.0	14.5	15.5	<0.0001
Bural	12.6	12.7	15.0	11 /	11.0	0.0	11 /	11 1	12.2	115	0.5	11.0	<0.0001
Kuldi	15.0	12.7	15.9	E1.4	FF 6	9.9	11.4	11.1	12.5	11.5	9.5	11.9	<0.0001
Urban tooshing	27.0	20.1	47.5 26 E	27.5	22.0	49.0	47.7	40.5	40.4	47.5	44.9	40.9	<0.0001
Modian Household Income (%)	57.0	30.2	50.5	57.5	52.5	40.2	40.0	40.4	40.0	40.2	44.0	50.9	<0.0001
Quartila 1	6.4	4.0	25.4	24.0	24.1	24 5	26.7	26.2	25.0	27.1	27.6	22.2	<0.0001
Quartile 2	0.4	4.9 10 F	25.4	24.8	24.1	24.5	20.7	20.3	25.9	27.1	27.0	22.2	<0.0001
Quartile 2	23.7	19.5	20.0	27.0	25.3	24.0	20.4	27.5	20.9	25.0	24.4	25.3	<0.0001
Quartile 3	42.2	40.2	24.0	23.5	20.5	23.5	23.0	25.0	24.1	24.5	20.9	24.0	<0.0001
Quartile 4	42.3	46.5	21.1	23.0	22.0	23.7	21.5	21.4	21.4	21.0	20.7	20.0	< 0.000 1
Payment (%)	02.0	02.2	02.5	01.0	02.0	02.2	02.1	00.2	70.2	00.5	01.0	01.0	.0.0001
Medicare	82.8	83.3	83.5	81.6	82.9	82.2	82.1	80.2	79.3	80.5	81.9	81.8	<0.0001
Medicald	2.9	3.0	3.2	3.0	3.2	3.0	2.9	3.2	4.0	4.4	3.7	3.4	<0.0001
Private insurance	12.0	11.9	11.4	12.8	11.6	11.3	12.9	14.2	13.8	12.4	11.5	12.4	<0.0001
Bed size	2.2	1.0	1.0	2.1	2.3	2.0	Ζ.Ι	2.5	2.8	2.5	2.0	2.4	< 0.000 1
Bed size	10.7	10.5	10.0	0.2	10.4	12.5	10 5	11.2	11.2	10.0	11.4	107	.0.0001
Small	10.7	10.5	10.0	9.3	10.4	12.5	10.5	11.2	11.3	10.0	11.4	10.7	<0.0001
Medium	26.4	25.4	25.6	26.4	24.5	26.0	27.9	23.8	22.5	24.2	24.6	25.2	<0.0001
Large	63.0	64.1	64.2	64.3	65. I	61.4	61.3	65.0	64.8	65.0	63.0	63.8	<0.0001
					1.0								
In-nospital Mortality (%)	2.1	2.5	2.0	1.8	1.9	2.0	1.8	1.7	2.1	2.1	2.1	2.0	0.02
AHKQ comorbidity measures (%)	,,	2.0	2.2	25	2.2	27	10	<i>.</i> .	6.0	7 5	07		.0.0001
Obesity	#	2.0	2.3	2.5	3.2	3.7	4.6	6.4	6.8	7.5	8.7	4.4	<0.0001
Hypertension	#	38.0	47.5	54.0	54.5	59.4	61.9	64.6	66.1	68.7	/1.1	53.5	< 0.0001
Diabetes mellitus	#	24.9	24.9	26.7	28.6	30.9	31.6	32.1	34.8	35.4	36.8	28.0	< 0.0001
Congestive heart failure	#	22.1	22.2	24.8	25.2	25.0	24.5	25.0	24.4	25.8	27.1	22.4	< 0.0001
Chronic pulmonary disease	#	23.9	24.7	26.1	28.4	27.7	28.7	27.9	28.5	30.4	30.0	25.2	<0.0001
Peripheral vascular disease	#	7.2	7.4	8.1	9.0	10.3	11.6	12.6	13.8	14.1	15.6	10.1	<0.0001
Renal failure	#	24.4	24.4	27.8	31.0	37.5	39.2	39.7	43.2	46.6	49.1	33.1	< 0.0001
Neurological disorders	#	6.7	6.6	6.9	6.8	7.4	8.2	8.4	9.1	9.3	9.5	7.2	< 0.0001
Anemia	#	24.1	23.9	26.1	27.6	29.2	30.4	30.8	35.3	33.9	36.2	27.1	< 0.0001
Weight loss	#	2.2	2.1	2.8	2.8	3.4	3.7	4.4	5.4	5.9	6.9	3.6	<0.0001
Rheumatic disorders	#	2.5	2.5	2.8	3.0	3.4	3.6	3.4	3.9	3.9	3.9	3.0	<0.0001
Psychiatric disorders	#	6.3	6.7	7.7	8.9	9.0	9.4	10.8	13.1	13.3	14.4	9.1	<0.0001
Liver disease	#	4.0	4.3	5.0	5.0	5.2	5.2	5.4	6.8	6.3	7.9	5.0	< 0.0001

Liver disease

AHRQ indicates Agency for Healthcare Research and Quality.

Variables are AHRQ comorbidity measures.

Neurological disorders include hemiplegia, paralysis, and others.

Psychiatric disorders include depression, psychosis, and others. Rheumatic disorders include rheumatoid arthritis and other collagen vascular disorders.

[#]Of note, data related to comorbidity measures were available only from 2002 to 2010.

Figure 1: Total number of ADOI hospitalizations, ADOI hospitalizations with hemorrhage, and ADOI hospitalizations without hemorrhage

Figure 2: Gender-wise distribution of ADOI hospitalizations

Trends in Hospitalizations

The hospitalization rate increased significantly from 185 per 1 million U.S. population in 2001 to 867 per 1 million U.S. population in 2011 (369.1% increase; p < 0.0001; **Table 2**). The rate of hospitalization for ADOI with hemorrhage increased from 125 to 513 per million U.S. population per year (309% increase; p < 0.0001). Also, the rate of hospitalization for ADOI without hemorrhage increased from 59 to 354 per million U.S. population per year (497% increase; p < 0.0001). The hospitalization rate increased significantly for all age groups (p < 0.0001). The hospitalization rate was higher in White race throughout the study period. Although, the hospitalization rate per million population was higher in women compared to men every single year during the study period (**Table 2**), the percent increase in hospitalizations was higher in men compared to women (405% versus 343%; p < 0.0001). Midwest region witnessed the highest percent increase in hospitalization and Northeast witnessed the lowest rate (404% vs 339%; p < 0.0001).

 Table 2: Angiodysplasia hospitalizations per 1 million US population

Year	2001	2002	2003	2004	2005	2006 2007 2008		2008	2009	2010	2011	2011 Average	Percent change	P-value
Overall	185	892	855	889	908	857	831	893	882	828	867	808	369.1	< 0.0001
Hemorrhage														
Yes	125	606	579	618	638	566	530	566	509	494	513	522	308.8	< 0.0001
No	59	286	276	271	270	292	301	327	373	334	354	286	496.5	<0.0001
Age in years														
18-34	1	4	5	7	5	4	4	5	4	6	6	5	638.5	< 0.0001
35-49	5	21	20	24	24	22	20	23	26	23	17	20	275.0	< 0.0001
50-64	19	97	98	103	113	115	97	119	123	113	132	103	599.4	< 0.0001
65-79	84	401	393	393	391	369	366	373	375	357	360	351	329.8	< 0.0001
>=80	77	368	339	361	374	347	342	372	353	328	351	328	358.0	< 0.0001
Gender														
Male	76	354	339	364	372	366	351	386	382	357	387	340	405.4	<0.0001
Female	108	538	516	526	536	491	480	506	499	470	480	468	343.4	<0.0001
Race														
White	113	516	491	513	541	508	458	550	580	561	585	492	418.2	< 0.0001
Black	15	81	76	83	66	78	83	93	82	107	117	80	662.6	<0.0001
Hispanic	10	52	53	39	50	57	50	48	61	51	57	48	497.6	<0.0001
Others	3	18	22	23	22	25	22	31	34	28	29	23	823.1	<0.0001
Region														
Northeast	42	204	186	181	204	185	170	183	175	179	182	172	339.1	<0.0001
Midwest	45	195	221	235	217	209	229	222	228	207	228	203	404.1	<0.0001
South	72	349	313	338	339	325	304	347	351	327	327	308	355.4	<0.0001
West	26	144	135	135	150	139	128	141	129	114	130	125	393.3	<0.0001
Location														
Rural	25	113	136	101	108	85	94	99	108	95	82	95	227.9	<0.0001
Urban nonteaching	91	438	406	454	505	427	396	433	409	393	389	395	326.2	<0.0001
Urban teaching	68	340	312	334	296	344	337	360	353	332	387	315	465.5	<0.0001
Median Household Income														
Quartile 1	12	44	218	221	219	210	222	235	228	224	240	188	1938.5	<0.0001
Quartile 2	44	174	229	240	230	211	220	245	237	214	212	205	382.6	<0.0001
Quartile 3	49	224	212	209	239	217	197	210	212	203	224	200	359.0	<0.0001
Quartile 4	78	430	180	204	205	204	178	191	189	174	179	201	128.9	<0.0001
Payment														
Medicare	153	743	714	726	753	705	682	716	699	667	710	661	363.5	<0.0001
Medicaid	5	27	27	26	29	31	24	28	35	36	32	27	491.7	<0.0001
Private insurance	22	106	97	114	105	97	107	126	122	103	100	100	350.2	<0.0001
Others (includes self-pay)	4	16	16	24	21	22	18	23	25	21	22	19	457.1	< 0.0001
Bed size														
Small	20	94	86	83	95	107	87	100	100	83	99	87	401.3	< 0.0001
Medium	49	226	219	234	222	223	232	212	199	200	213	203	337.6	<0.0001
Large	116	572	549	572	591	527	509	580	571	538	546	516	369.3	<0.0001

AHRQ Co-morbidities

As per our analysis, the most common diagnoses associated with ADOI hospitalizations were hypertension (53.5%), renal failure (33.1%), and diabetes mellitus (28%). Trends of several other comorbidities associated with ADOI also increased significantly, as depicted in **Table 1**.

All-cause Inpatient Mortality

Overall in-hospital all-cause mortality associated with these hospitalizations was 2%. Unsurprisingly, the overall mortality rate for patients hospitalized with ADOI with hemorrhage was higher than those without hemorrhage (2.2% vs 1.6%) (**Figure 3**). However, the mortality rate for ADOI with hemorrhage decreased from 2.3% in 2001 to 1.9% in 2011 (19.2% decrease; p <0.0001) whereas it increased from 1.5% to 2.3% for ADOI without hemorrhage during the study period (53% increase; p <0.0001) (**Table 3**). The mortality rate was highest in \geq 80-year age group at 2.5%. The mortality rate was higher in males (2.1%) than females (1.9%). Also, mortality rate was highest in West (2.4%) and hospitalizations paid by Medicaid (2.2%). There was no significant difference in mortality rate as far as bed size was concerned (**Table 3**).

Figure 3: All-cause inpatient mortality rate in ADOI hospitalizations with and without hemorrh	lage
--	------

Ţ	ak	ole	3	:/	n-l	10S	pit	al	т	orte	ali	ty	(%)	foi	r (ang	ioc	1y	sp	las	sia	hc	sp	ita	l	izc	iti	or	١S

		change	P value
Overall 2.1 2.5 2.0 1.8 1.9 2.0 1.8 1.7 2.1 2.1 2.1	2.0	-1.0	0.02
Hemorrhage			
Yes 2.3 2.7 2.3 2.0 2.1 2.4 1.9 2.1 2.1 2.5 1.9	2.2	-19.2	< 0.0001
No 1.5 2.0 1.5 1.3 1.6 1.2 1.5 1.0 2.0 1.6 2.3	1.6	53.0	< 0.0001
Age in years			
18-34 0.0 0.0 0.0 2.1 0.0 0.0 0.0 2.5 4.5 0.0 1.7	1.0	-	0.81
35-49 0.6 2.2 2.2 0.0 1.9 1.0 0.0 1.3 0.4 2.2 1.7	1.2	196.5	< 0.0001
50-64 1.7 1.7 2.3 1.3 1.3 1.1 1.1 1.5 2.0 1.7 0.9	1.5	-43.6	< 0.0001
65-79 2.0 1.8 1.7 1.4 1.5 1.7 1.6 1.5 1.9 2.2 2.0	1.7	2.1	< 0.0001
>=80 2.4 3.3 2.4 2.5 2.6 2.7 2.3 2.0 2.4 2.3 2.6	2.5	5.8	< 0.0001
Gender			
Male 2.2 2.9 2.0 2.1 2.4 1.9 1.8 2.2 2.0 2.3 1.9	2.1	-13.9	< 0.0001
Female 2.0 2.2 2.1 1.6 1.6 2.1 1.8 1.4 2.1 2.1 2.2	1.9	10.5	< 0.0001
Race			
White 2.3 2.4 2.0 1.8 2.2 2.0 1.7 1.7 2.1 2.0 2.2	2.0	-3.5	0.48
Black 2.7 2.8 2.7 1.8 1.4 1.9 2.0 1.4 2.1 2.5 1.3	2.0	-51.3	0.26
Hispanic 2.2 3.2 2.5 1.9 0.6 1.8 1.9 1.4 2.0 1.7 2.0	1.9	-7.9	0.05
Others 1.5 4.2 2.1 2.9 3.9 1.3 3.0 1.0 2.6 4.2 1.4	2.5	-6.1	0.0002
Region			
Northeast 2.1 3.0 2.2 1.8 2.3 1.9 1.8 2.0 2.2 1.8 2.1	2.1	1.0	< 0.0001
Midwest 1.9 2.0 1.7 1.6 2.3 2.0 1.6 1.7 2.0 2.3 1.9	1.9	-0.5	0.008
South 1.8 2.1 1.8 1.7 1.5 2.1 1.8 1.7 1.8 1.9 2.0	1.8	11.0	< 0.0001
West 3.0 3.0 2.9 2.4 1.9 1.9 2.1 1.4 2.8 3.0 2.3	2.4	-22.5	< 0.0001
Location			
Rural 2.6 2.5 1.7 2.1 1.9 1.7 1.9 1.3 1.8 1.7 2.5	2.0	-3.5	0.32
Urban nonteaching 1.9 2.2 2.3 1.6 1.9 2.1 1.9 1.9 2.1 1.9 2.3	2.0	19.2	0.33
Urban teaching 2.1 2.8 1.9 2.0 1.9 1.9 1.7 1.6 2.3 2.5 1.7	2.0	-17.1	0.25
Median Household Income			
Quartile 1 2.4 2.1 1.8 1.6 2.0 1.9 2.2 1.5 1.6 2.5 2.3	2.0	-3.8	0.05
Quartile 2 2.5 2.2 2.4 1.8 1.7 1.9 1.5 1.9 2.2 1.9 2.0	2.0	-19.8	0.41
Quartile 3 2.0 2.8 1.9 1.8 2.5 2.5 1.8 1.5 1.6 2.3 2.0	2.1	0.5	0.05
Quartile 4 1.8 2.4 2.0 2.0 1.6 1.7 1.6 2.0 2.9 1.9 1.8	2.0	1.1	0.48
Payment			
Medicare 2.2 2.5 2.0 2.0 2.1 1.9 1.8 2.2 2.2 2.3	2.1	7.4	< 0.0001
Medicaid 2.8 3.6 4.0 2.7 1.6 3.0 1.8 1.2 1.6 1.1 1.0	2.2	-65.0	0.14
Private insurance 1.5 2.0 1.9 0.7 1.6 1.2 1.2 1.5 1.6 2.0 0.8	1.5	-44.8	< 0.0001
Others (includes self-pay) 1.2 1.9 3.4 1.0 1.5 1.4 2.4 1.0 3.0 2.6 0.9	1.9	-24.4	0.07
Bed size			
Small 1.2 3.8 1.4 2.3 2.6 1.8 1.5 1.7 2.0 2.1 2.0	2.0	65.6	0.29
Medium 2.4 2.7 2.2 1.8 1.7 1.8 2.0 1.7 1.6 2.2 1.9	2.0	-20.3	0.45
Large 2.1 2.1 2.1 1.8 1.9 2.1 1.7 1.7 2.3 2.1 2.1	2.0	1.4	0.50

	Table 4: Cost	t (in U.S	dollars) d	of angiodysp	lasia hos	spitalizations
--	---------------	-----------	------------	--------------	-----------	----------------

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	Average	Percent Change	P value
Number of obs. (n)	39,244	38,297	37,122	39,048	40,336	38,518	37,749	41,068	41,029	38,827	41,214	39,314	5.0	< 0.0001
Average cost (\$)	10,701	11,530	11,491	11,422	12,064	11,715	11,607	11,945	12,323	13,337	12,478	11,874	16.6	
Total cost per year (in	420	112	427	116	197	451	120	401	507	519	514	467	22.5	
millions)	420	442	427	440	407	451	430	491	507	510	514	407	22.5	
Age in years														
18-34	165	180	221	295	216	191	200	217	195	295	273	223	65.3	<0.0001
35-49	977	883	869	1,044	1,068	980	918	1,078	1,224	1,086	820	995	-16.0	0.127
50-64	4,016	4,174	4,251	4,539	5,035	5,150	4,426	5,467	5,726	5,310	6,288	4,944	56.6	<0.0001
65-79	17,791	17,222	17,044	17,262	17,349	16,558	16,626	17,147	17,426	16,735	17,120	17,116	-3.8	<0.0001
>=80	16,280	15,786	14,713	15,861	16,590	15,583	15,547	17,101	16,432	15,370	16,694	15,996	2.5	0.0008
Gender														
Male	16,238	15,194	14,732	15,961	16,536	16,454	15,959	17,775	17,785	16,756	18,372	16,524	13.1	<0.0001
Female	23,007	23,103	22,390	23,087	23,794	22,065	21,790	23,288	23,240	22,072	22,837	22,788	-0.7	< 0.0001
Race														
White	23,970	22,169	21,317	22,520	24,036	22,805	20,818	25,280	26,966	26,324	27,810	24,001	16.0	<0.0001
Black	3,261	3,484	3,301	3,640	2,910	3,495	3,773	4,271	3,823	5,017	5,568	3,867	70.7	<0.0001
Hispanic	2,033	2,224	2,295	1,701	2,225	2,578	2,269	2,229	2,833	2,374	2,720	2,316	33.8	0.4758
Others	657	768	961	1,000	987	1,127	1,020	1,416	1,591	1,307	1,358	1,108	106.7	<0.0001
Region														
Northeast	8,819	8,745	8,086	7,964	9,038	8,296	7,729	8,425	8,126	8,397	8,670	8,390	-1.7	<0.0001
Midwest	9,604	8,360	9,574	10,317	9,624	9,370	10,385	10,191	10,589	9,705	10,840	9,869	12.9	<0.0001
South	15,246	14,996	13,585	14,857	15,032	14,588	13,804	15,965	16,314	15,362	15,545	15,027	2.0	< 0.0001
West	5,576	6,196	5,876	5,910	6,642	6,265	5,831	6,488	6,001	5,363	6,158	6,028	10.5	< 0.0001
Location														
Rural	5,339	4,867	5,900	4,453	4,805	3,800	4,293	4,551	5,026	4,472	3,919	4,675	-26.6	< 0.0001
Urban nonteaching	19,374	18,816	17,638	19,950	22,405	19,192	18,017	19,929	19,025	18,437	18,487	19,206	-4.6	< 0.0001
Urban teaching	14,532	14,614	13,537	14,645	13,126	15,474	15,319	16,573	16,417	15,592	18,398	15,293	26.6	0.0064
Median Household														
Income														
Quartile 1	2,496	1,889	9,442	9,697	9,708	9,440	10,086	10,805	10,621	10,527	11,393	8,737	356.4	< 0.0001
Quartile 2	9,313	7,464	9,954	10,525	10,199	9,477	9,981	11,277	11,044	10,016	10,061	9,938	8.0	<0.0001
Quartile 3	10,368	9,622	9,203	9,172	10,593	9,758	8,966	9,672	9,886	9,517	10,656	9,765	2.8	< 0.0001
Quartile 4	16,607	18,482	7,819	8,974	9,112	9,144	8,109	8,767	8,789	8,156	8,510	10,225	-48.8	<0.0001
Payment														
Medicare	32,507	31,899	30,980	31,854	33,430	31,675	30,977	32,915	32,515	31,269	33,737	32,160	3.8	< 0.0001
Medicaid	1,143	1,151	1,192	1,158	1,303	1,389	1,082	1,295	1,624	1,707	1,514	1,323	32.5	< 0.0001
Private insurance	4,719	4,546	4,220	4,996	4,673	4,367	4,873	5,811	5,664	4,830	4,756	4,860	0.8	<0.0001
Others (includes self-	950	601	674	1.026	020	000	709	1 0 2 7	1 1 1 7	069	1 061	026	247	<0.0001
pay)	050	160	074	1,050	929	222	190	1,057	1,147	900	1,001	920	24.7	<0.0001
Bed size														
Small	4,198	4,026	3,728	3,635	4,196	4,808	3,975	4,598	4,641	3,874	4,712	4,217	12.2	< 0.0001
Medium	10,341	9,710	9,502	10,288	9,878	9,998	10,522	9,765	9,236	9,389	10,132	9,887	-2.0	< 0.0001
Large	24,705	24,561	23,846	25,125	26,262	23,661	23,133	26,690	26,590	25,238	25,960	25,070	5.1	< 0.0001

Length of Stay and Cost of Care

Median length of stay (LOS) was 4 days (interquartile range 2 to 7 days). The mean cost of care increased from \$10,701 per hospitalization in 2001 to \$12,478 in 2011 (16.6% increase; p < 0.0001) (**Figure 4**). The total cost of all such hospitalizations increased from \$419 million in 2001 to \$514 million in 2011 (**Table 4**).

Figure 4: Average cost of care for ADOI related hospitalizations

DISCUSSION

Our study reports important findings associated with ADOI over a 10-year period in the U.S. Angiodysplasia accounts for a large percentage of GI bleeding, however, as they are commonly asymptomatic and found during investigation of an unrelated issue, limited epidemiologic information is available on the subject (2). We found that the number of hospitalizations related to angiodysplasia, both with and without hemorrhage, significantly increased during the study period. Cost of care per hospitalization related to this diagnosis increased by a staggering \$95 million dollars over the course of the study period.

The etiology of angiodysplasias is not fully understood. Recent theory suggests that the lesions are the result of dilated and tortuous veins in the submucosa due to chronic low-grade intermittent obstruction of submucosal veins (13).

This idea is supported by the finding that angiodysplasias are most commonly located in areas of the GI tract with of high wall tension including the cecum and gastric antrum. It is not surprising then that the majority of angiodysplasia are acquired with age (3). Consistent with previously published studies, most of the hospitalizations in our study were identified in the 65 to 74 year age group (14,15). Survival bias and other factors such as multiple comorbidities, must also be considered as possible explanations of this trend.

From our analysis of the comorbidity measures, we found that the most frequent co-existing conditions were hypertension, diabetes, and renal failure. Von Willebrand disease and aortic stenosis have also been linked to higher rates of angiodysplasia. However, it remains unclear if it is the incidence or just detection rates in these populations that are higher (16). Patients who have bled from gastrointestinal angiodysplasia and aortic stenosis should be referred for an evaluation for aortic valve replacement (17).

Since the clinical presentation of angiodysplasia displays considerable variation, ranging from asymptomatic occult blood loss to life threatening GI hemorrhage, it is often difficult to diagnose (2). More recently, expanded use of capsule endoscopy, balloon-assisted enteroscopy and computed tomographic angiography have enabled care providers to improve their diagnostic capabilities (17,20). Several treatment options including endoscopic interventions, endovascular embolization and surgery including minimally invasive procedures exist (21). Interestingly, biomarkers such as Ang-2 and TIE-2 may now be able to predict the presence of gastrointestinal angiodysplasia and predict targets for future therapies (17). Hence, facilities with highly trained specialists utilizing more sophisticated equipment are often required for diagnosis and management. Therefore, it is not surprising that hospitalizations with ADOI were found to be greater in larger more urban centers.

Throughout the study period, more women than men were hospitalized with a diagnosis of ADOI. However, our analysis revealed a change in trends; the percent increase in hospitalizations during the study period was higher in men than women. Hospitalizations were also higher in the white population, with the highest percent increase in

hospitalizations per million in the Midwest region. Hernandez et al recently published a study in which they found a large geographic variation in oral anticoagulation use for atrial fibrillation, with the highest rates in the Midwest region of the U.S (22). Increased bleeding risk in this population might explain a portion of the percent increased rate of hospitalizations for ADOI in this region.

Overall, in-hospital all-cause mortality associated with these hospitalizations was 2%. Not surprisingly, mortality rates were highest in the > 80-year age group. Although mortality rates were higher in those with ADOI with hemorrhage, the mortality rate for ADOI with hemorrhage decreased during the study period. We postulate this is the result of advancements in imaging and endoscopic techniques enhancing our ability to better detect and manage occult gastrointestinal bleeding through the GI tract. Additionally, studies have shown newer techniques such as capsule endoscopy and double-balloon enteroscopy have a high diagnostic yield and positive impact on management in patients aged 65-70 years or more (23,25). Endotherapy with argon plasma coagulation resolves recurrent bleeding episodes in 83% of patients with GI angiodysplasias (26). In patients who fail (or are not suitable for) other interventions, treatment with thalidomide or octreotide can lead to a clinically meaningful response in 71.4% and 77% of patients respectively (2).

This study found a significant increase in the cost of care for ADOI related hospitalizations from 2001 to 2011. Greater use of advanced diagnostic and therapeutic techniques may be a major factor driving up costs. Alternatively, improvements in coding accuracy may explain this rising trend.

Analysis of the NIS database permitted us to study a large population. Such analysis should decrease the inherent bias seen in studies that are confined to a single region or hospital (4). However; there are limitations when it comes to using this type of healthcare utilization database. Multiple factors such as coding inaccuracies, missing clinical information, and the lack of outpatient characteristics, increase the potential for both overestimating and underestimating a particular diagnosis.

For example, our analysis of the NIS database using the ICD-9 codes did not permit us to differentiate between new onset versus prior history of hospitalization for ADOI with bleeding. In addition, the NIS considers each hospitalization as a separate entry; therefore, it is not possible to separate a new case of ADOI from a readmission (7). These factors could result in an overestimation in the number of cases. Conversely, as angiodysplasias are often the culprit behind occult bleeding, particularly in the non-hospitalized population, there is a risk that our analysis could underestimate the number of bleeds related to angiodysplasia each year. Also important to consider is the fact that the lack of detailed clinical information may result in misclassification of outcomes related to a diagnosis (27).

Using the NIS database, we were only able to examine in-hospital characteristics; as such, the study did not permit analysis of long-term follow up of patient outcomes. In addition, it did not permit us to study health care utilization in out-patient settings or emergency departments.

In conclusion, our analysis of hospitalization trends from 2001-2011, found a consistent increase in the number of hospitalizations associated with angiodysplasia of the intestine as well as the cost of associated care. Angiodysplasia is now recognized as a major cause of both occult and overt GI bleeding (28). We believe that increases in awareness of the condition, along with improved diagnostic and therapeutic techniques, may result in further improvements in mortality rates in the future. Whether this will reduce the economic burden will require further study, but could be favorably influenced by efforts to ensure early diagnosis and to make treatment available at more health care centers.

REFERENCES

- 1. Regula J, Wronska E, Pachlewski J. Vascular lesions of the gastrointestinal tract. Best Pract Res Clin Gastroenterol 2008;22(2):313-28. https://doi.org/10.1016/j.bpg.2007.10.026. PMid:18346686
- 2. Sami SS, Al-Araji SA, Ragunath K. Review article: gastrointestinal angiodysplasia pathogenesis, diagnosis and management. Aliment Pharmacol Ther. 2014;39(1):15-34. https://doi.org/10.1111/apt.12527. PMid:24138285
- 3. Foutch PG. Angiodysplasia of the gastrointestinal tract. Am J Gastroenterol 1993, 88(6):807-18. PMid:8389094
- 4. Overview of the National (Nationwide) Inpatient Sample (NIS). Retrieved on 17 January 2018 from https://www.hcup-us.ahrq.gov/nisoverview.jsp
- NIS Related Reports. Retrieved on 17 January 2018 from https://www.hcup-us.ahrq.gov/db/nation/nis/ nisrelatedreports.jsp
- Badheka AO, Chothani A, Mehta K, et al. Utilization and adverse outcomes of percutaneous left atrial appendage closure for stroke prevention in atrial fibrillation in the United States: influence of hospital volume. Circ Arrhythm Electrophysiol. 2015;8(1):42-8. https://doi.org/10.1161/CIRCEP.114.001413 PMid:25480543

- Patel NJ, Deshmukh A, Pant S, et al. Contemporary trends of hospitalization for atrial fibrillation in the United States, 2000 through 2010: implications for healthcare planning. Circulation 2014;129(23):2371-9. https://doi.org/10.1161/CIRCULATIONAHA.114.008201 PMid:24842943
- 8. Singh V, Rodriguez AP, Thakkar B, et al. Hospital Admissions for Chest Pain Associated with Cocaine Use in the United States. Am J Med. 2017;130(6):688-98. https://doi.org/10.1016/j.amjmed.2016.12.003 PMid:28063854
- 9. Population and Housing Unit Estimates. Retrieved on 18 January 2018 from https://www.census.gov/programssurveys/popest.html
- 10. HCUP Methods Series. Retrieved on 17 January 2018 from https://www.hcup-us.ahrq.gov/reports/methods/ 1998ChangesintheNISRedesignFinal.pdf
- 11. Armitage P: Tests for Linear Trends in Proportions and Frequencies. Biometrics 1955;11(3):375-386. https://doi.org/10.2307/3001775
- 12. Nahm FS: Nonparametric statistical tests for the continuous data: the basic concept and the practical use. Korean J Anesthesiol 2016;69(1):8-14. https://doi.org/10.4097/kjae.2016.69.1.8 PMid:26885295 PMCid:PMC4754273
- 13. Boley SJ, Sammartano R, Adams A, et al. On the nature and etiology of vascular ectasias of the colon. Degenerative lesions of aging. Gastroenterology 1977;72(4 Pt 1):650-60. PMid:300063
- 14. Clouse RE, Costigan DJ, Mills BA, et al. Angiodysplasia as a cause of upper gastrointestinal bleeding. Arch Intern Med. 1985;145(3):458-61. https://doi.org/10.1001/archinte.145.3.458 PMid:3872107
- 15. Richter JM, Hedberg SE, Athanasoulis CA, et al. Angiodysplasia. Clinical presentation and colonoscopic diagnosis. Dig Dis Sci. 1984;29(6):481-5. https://doi.org/10.1007/BF01296266 PMid:6609803
- 16. Cappell MS. Spatial clustering of simultaneous nonhereditary gastrointestinal angiodysplasia. Small but significant correlation between nonhereditary colonic and upper gastrointestinal angiodysplasia. Dig Dis Sci. 1992;37(7):1072-7. https://doi.org/10.1007/BF01300289 PMid:1618055
- 17. Jackson CS, Strong R. Gastrointestinal Angiodysplasia: Diagnosis and Management. Gastrointest Endosc Clin N Am. 2017;27(1):51-62. https://doi.org/10.1016/j.giec.2016.08.012 PMid:27908518
- 18. Godeschalk MF, Mensink PB, van Buuren HR, et al. Primary balloon-assisted enteroscopy in patients with obscure gastrointestinal bleeding: findings and outcome of therapy. J Clin Gastroenterol. 2010;44(9):e195-200. https://doi.org/10.1097/MCG.0b013e3181dd1110 PMid:20505527
- 19. Prachayakul V, Deesomsak M, Aswakul P, et al. The utility of single-balloon enteroscopy for the diagnosis and management of small bowel disorders according to their clinical manifestations: a retrospective review. BMC Gastroenterol. 2013;13:103. https://doi.org/10.1186/1471-230X-13-103 PMid:23800178 PMCid:PMC3716953
- Pandey V, Ingle M, Pandav N, et al. The role of capsule endoscopy in etiological diagnosis and management of obscure gastrointestinal bleeding. Intest Res. 2016;14(1):69-74. https://doi.org/10.5217/ir.2016.14.1.69 PMid:26884737 PMCid:PMC4754525
- 21. Shah AR, Jala V, Arshad H, et al. Evaluation and management of lower gastrointestinal bleeding. Dis Mon 2018. https://doi.org/10.1016/j.disamonth.2018.02.002 PMid:29525374
- 22. Hernandez I, Saba S, Zhang Y. Geographic Variation in the Use of Oral Anticoagulation Therapy in Stroke Prevention in Atrial Fibrillation. Stroke 2017;48(8):2289-91. https://doi.org/10.1161/STROKEAHA.117.017683 PMid:28655815
- 23. Urgesi R, Cianci R, Pagliari D, et al. Is capsule endoscopy appropriate for elderly patients? The influence of ageing on findings and diagnostic yield: An Italian retrospective study. Dig Liver Dis. 2015;47(12):1086-8. https://doi.org/10.1016/j.dld.2015.09.004 PMid:26514739
- 24. Sidhu R, Sanders DS. Double-balloon enteroscopy in the elderly with obscure gastrointestinal bleeding: safety and feasibility. Eur J Gastroenterol Hepatol. 2013;25(10):1230-4. https://doi.org/10.1097/ MEG.0b013e3283630f1b
- 25. Li L, Chen C, Li Y, et al. The role of capsule endoscopy in the diagnosis and treatment of obscure gastrointestinal bleeding in older individuals. Eur J Gastroenterol Hepatol. 2016;28(12):1425-30. https://doi.org/10.1097/MEG.00000000000737 PMid:27603298
- 26. Olmos JA, Marcolongo M, Pogorelsky V, et al. Argon plasma coagulation for prevention of recurrent bleeding from GI angiodysplasias. Gastroint. Endosc. 2004;60(6):881-6. https://doi.org/10.1016/S0016-5107(04)02221-7

- 27. Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic research on therapeutics. J Clin Epidemiol. 2005;58(4):323-37. https://doi.org/10.1016/j.jclinepi.2004.10.012 PMid:15862718
- 28. Liao Z, Gao R, Xu C, et al. Indications and detection, completion, and retention rates of small-bowel capsule endoscopy: a systematic review. Gastrointest Endosc. 2010;71(2):280-6. https://doi.org/10.1016/j.gie.2009.09.031 PMid:20152309

\$\$\$\$\$\$\$\$

http://www.ejgm.co.uk